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ABSTRACT   

The development and adoption of standard image quality measurement and analysis methods have helped both the 

evaluation of competing imaging products and in technologies. Inherent in the interpretation of results from any 

particular evaluation, however, are the variation of the method itself, the sampling of test images, equipment, and test 

conditions. Here we take a statistical approach to measurement variation, and interpret the objective as being the 

estimation of particular system or image properties, based on data, collected as part of standard testing. Measurement 

variation was investigated for two signal-transfer methods commonly used for digital camera and scanner evaluation: the 

ISO 12233 slanted-edge spatial frequency response and the dead-leaves method for texture-MTF evaluation being 

developed by the Camera Phone Image Quality (CPIQ) Initiative. In each case, the variation due to the selection of 

analysis regions was computed by repeated analysis. The slanted-edge methods indicated a relative error in the range of 

1-3% depending on the nature of the region selection. For the dead-leaves method, the amplitude spectrum (square root 

of the noise-power spectrum) showed a relative error of approximately 4-6%, however, this can be reduced by applying 

spectral estimation methods commonly used in image noise analysis. 
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1. INTRODUCTION 

The adoption of image quality performance standards has lead to the common notion that imaging performance, be it for 

signal microstructure, image noise, color accuracy, or optical distortion is something to be measured and specified. 

When performance measures are derived using standard test targets and analysis software, many sources of variation can 

be reduced. This can lead to the conclusion that even minor differences in computed results are due to the equipment or 

process under test. An improved understanding of the origins and control of measurement variation, however, can be 

obtained by addressing performance measurement as an estimation task. 

Practical systems can introduce error during color calibration and when acquiring image scene information. For large 

populations, it is often assumed that the error can be modeled as a random variable having a zero mean. This type of 

variation reduces system precision. In the case of a single color instrument, camera, or scanner, however, error due to 

deterioration of a physical standard, optical filter, or detector will introduce a predictable error into the signal. This type 

of error is often described as a bias error and reduces system accuracy. Both bias and variation errors are modified as the 

signals are transformed (processed) into their final form, and error-propagation methods
1,2

 are often used to describe the 

influence of the data-processing path on the magnitude of bias error. In this paper, we address the measurement errors 

for two image quality measurements: the ISO 12233 slanted-edge spatial frequency response,
3,4

 and the dead-leaves 

method for texture-MTF evaluation
5
 being developed by the Camera Phone Image Quality (CPIQ) Initiative. 

Error propagation analysis is often used to predict the transformation of variation or error when a signal undergoes a 

transformation. Less-often considered, however, is the measurement error inherent in the calculation of several derived 

measurements, such as for visual color-difference, acutance or image sharpness, graininess, modulation transfer function 

(MTF), contrast-to-noise ratio, or noise-power spectrum.  

2. MEASUREMENT VARIATION 

Consider the signal variations that result from exposure and detector characteristics. When signals are combined, e.g., by 

color-matrix or spatial operations, so are the variations and this can be modeled as forming a function of random 

variables. After describing the technical basis for analysis of the estimation error in terms of component-parameter 

variations, we address the magnitude of measurement variation for particular measurements of interest. Based on this 



 

 
 

 

approach, it is possible to model the propagation of the first- and second-order error statistics in terms of expected bias 

and variation error when applying such measurements in specific performance monitoring or production tasks.  

Many image quality measurements follow four basic steps of Fig. 1. In this report, we are primarily concerned with the 

measures based on well-established imaging parameters or descriptors, such Modulation Transfer Function (MTF),
5
 

noise power spectrum, mean detected signal. Others based on novel or higher-order statistics, however, also follow this 

path. The first step is the adoption and following of particular evaluation conditions and methods. For several 

international standards, this includes the use of specific test targets (charts) and lighting conditions. For other 

evaluations, this could involve extracting images or other data from collections of images. 
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Figure 1. Several steps used in image quality evaluation based on imaging-system or image parameters. 

 

The second part of the image quality evaluation is aimed at the extraction of image regions (for test images) on which 

the imaging parameters will be based. This can include the selection of regions of interest (ROIs) of image features for 

particular parameters; for example, edge features used in the edge SFR measurements described in ISO 12233, or the 

circular sinusoidal elements used in the Siemens-star SFR evaluation.
6
 

The next step is the computation of imaging parameters such as average signal value, noise amplitude, MTF or SFR, 

image frequency spectrum or noise-power spectrum. Based on one or more of these imaging parameters, the image 

quality metric is computed in the final operation. Often this step involves the combining of several measurements, e.g., 

when we apply a visual contrast-sensitivity function and integrate (weighted sum) over spatial frequencies or form a 

signal-to-noise ratio (SNR). 

While it is common to consider the physical characteristics of image capture and signal readout as a starting point for 

discussions of variation in imaging performance, we will start by considering the variation in the derived measurements 

of imaging performance. The reason for this is that the observed variation in an imaging measurement, such as MTF is 

influenced by the details of data acquisition (test target and testing protocol), data selection (image sampling – ROIs in 

test images), and the processing methods used (data smoothing, parametric fitting, etc.). We start by considering several 

common types of signal transformations that are used when estimating image-quality related measures.
*
 

If signal x, is subject to variation or error, we can model this as having a random component 

xx ex += µ  

where xe is a zero-mean random variable with a probability density function and corresponding variance, 
2

xσ . We can 

define a bias of x by comparing the mean value with the true value, K 

K−= xxb µ , 

which is zero if x is unbiased. 

If we have an understanding of the magnitude and nature of measurement variation, under certain conditions, it is 

possible to model the influence of this variation on the resulting estimated image quality parameters. If we limit our 

attention to first- (bias) and second-order (variance) statistics, then useful approximations are available by casting the 

estimation as a transformation of random variables. When several random signals (variables) are related, a matrix-vector 

notation is often used. Examples of related signals include the values of a (sampled) MTF, noise-power spectrum, or 

CIELAB coordinates.  

A general multivariate transformation can be described as 

                                                 
*
 Often the measured value is actually estimated as the mean value of observed data, but for our purposes, we will refer to image 

quality metrics estimated from measurements of the system or image. 
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The superscript 
T
 indicates matrix transpose. If the bias in each component signal of x is written as a vector  

[ ]T
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the output bias vector is 

 xfy bJb ≅ , (2) 
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The variation in y can be expressed in the form of the covariance matrix, xΣ , where the diagonal elements are the 

variance values, e.g., 
2

11 1xσσ ≡ . The resulting covariance matrix for y is
1
 

 
T

xy ff JΣJΣ ≅ . (3) 

Common matrix transformations used in image quality estimates are those applied to red, green, and blue signals are part 

of color correction, illuminant transformation and the like. The propagation of bias error for a simple matrix 

transformation of a set of color signals can be understood as a special case of Eq. (3). For example, 

 Mxy = . (4) 

Since each element of the matrix, M, is a constant, the resulting bias and covariance in y are, 

 xy Mbb ≅ , (5) 

 
T

xy MMΣΣ ≅ . (6) 

Equations (5) and (6) provide us with a way to express (or specify) the bias error and variations in computed image 

quality measures in terms of the underlying component measurement uncertainty. We now address this variation for two 

measurement methods used for evaluation of image capture systems. 



 

 
 

 

3. SLANTED-EDGE SFR MEASUREMENT 

The MTF is a measurement of the transfer of image (signal) information. In the past, methods based on test features, 

such as edges, lines, random fields, and periodic signals, such as square-waves and sinusoids, have been used for image 

quality evaluation. Choosing a standard method for a particular application calls for a balance of several factors, such 

ease of testing and analysis and minimizing (or including) the influence of other system characteristics, such as lens-field 

variation, image noise, and more recently, certain adaptive image processing operations. 

The theory behind edge gradient analysis for MTF measurement is well established,
6,8,9

 and its application to digital 

capture devices via slanted edges is also well documented and part of an ISO standard.
3
 The method is based on the 

image (or system output) due to an input edge feature of high optical quality. Often the measured signal modulation can 

be taken as an estimate of the MTF of the system. In other cases, the output modulation is divided by the input edge 

modulation, frequency by frequency, to yield the measured system MTF. We will refer to the single output modulation, 

normalized to unity at zero frequency, as the spatial frequency response (SFR), which is consistent with the standard.  

There are three basic operations: acquiring an edge profile from the (image) data, computing the derivative in the 

direction across the edge, and computing the discrete Fourier transform of this derivative array. If we interpret the 

slanted-edge SFR measurement as an estimation problem, several sources of error can be seen as introducing bias and/or 

variation into the estimated SFR.  

For example, standard software
 
programs do not require a precise alignment of the edge feature in scene with image 

sampling array. This requires estimating the edge location from the data. An error introduced into the computed slope 

propagates as a bias error in the resulting SFR or MTF measurement.
4
 Both bias error and variation are also introduced 

into practical measurements by image noise fluctuations.  

Rather than investigate the various sources of systematic effort or variation that may be observed in a particular test or 

laboratory, our purpose is to focus on the variation that is intrinsic to a particular testing facility. As an example, we take 

the measurement of a camera SFR and the establishment of confidence limits around reported results. So for our 

purposes, it will be assumed that systematic, bias errors are not the objective, but rather an understanding of the variation 

within a single reported measurement. In the following examples, we have used test images of a standard test chart for a 

digital SLR camera typically used by the advanced amateur. 

3.1 Observed variation 

For a specific test facility,
*
 we can evaluate the precision in the camera SFR results by gathering results of repeated 

measurements. To measure inter-image variation, several test images were captured. From these image files, 10 separate 

subimages of identical size (128 × 300 pixels) were used to compute the edge SFR. The results were then compared as 

shown in Fig. 2(a), where the mean and ± one standard deviation are plotted. The variation as a function of spatial 

frequency is also shown as a relative error in Fig. 2(b). For the most important spatial frequency range, the relative error 

was found to be in the range of 1-3%. 

Intra-image variation is of interest when we repeat the above experiment with a single test image file, but vary the ROI 

used for the evaluation. This situation applies when the ROI is manually selected by the user (via computer mouse) and 

variations in position occur. In this case, a single test image was used, and a fixed analysis region size was chosen. The 

edge SFR analysis was conducted repeatedly, but with random x- and y- translations introduced in the ROI selection. 

Note that in this situation, we are evaluating the measurement sensitivity to, e.g., the influence of the image sampling 

along the edge feature and image noise. Each different ROI in the set (N = 100) partially overlaps so that the variation 

across the target is minimized but differs sufficiently (approximately ± 20 pixels in each direction) that different edge 

sampling and noise statistics are used. 

The error introduced into the SFR measurement at high frequencies can be compared by considering Figs. 2(b) and 3(c). 

These appear to indicate the extent to which the ROI selection influences measurement variation at higher frequencies. 

When independent image subarrays are chosen (Fig. 2), the image noise fluctuations are independent. When the analysis 

is performed for a set of partially overlapping ROIs from the same image, the variation is reduced.  

                                                 
*
 The testing facility would include: test target, lighting, testing protocol, such as camera settings and alignment, and analysis 

software. 
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 (a) (b) 

Figure 2.: Results of repeated slanted-edge SFR evaluation (N = 100) for different subregions (ROIs) (a) mean response and 

±1 standard deviation, and (b) relative error. 

 

4. DEAD-LEAVES MTF MEASUREMENT 

A recently proposed method to evaluate digital cameras and cell-phone cameras uses a computed image field comprising 

overlapping features (circles or rectangles).
5
 An example of this computed “dead leaves” target is shown in Fig. 4(a). 

The method is aimed at providing an effective MTF for image fluctuations (signals) that are influenced by adaptive or 

signal-dependent image processing. Many image processing operations, such as those for sharpening and noise 

reduction, apply spatial operations that vary with local image features. For these operations, a unique MTF description 

does not apply, but suitable classes of important signals can be used to measure an effective MTF. The “dead leaves” 

MTF method relies on several underlying statistical characteristics of this image field.  

As with most signal-transfer descriptions such the MTF, the ratio of output (processed image) measurement with the 

corresponding, modeled or measured, characteristics for the input target image is called for. In this case the signal 

spectrum is computed as the amplitude of the discrete Fourier transform (DFT) of the two-dimensional luminance image 

array. The basic steps of the proposed method are:
 

1. Transform the captured image array of the target field to one encoded as proportional to luminance. 

2. Compute the power-spectral density as the square of the amplitude of the two-dimensional DFT of the array. 

3. Divide this array, frequency-by-frequency, by the modeled spectrum for the specific target to yield a two-

dimensional array as the square of the effective MTF. 

4. Compute the square-root, frequency-by-frequency, of this vector. 

5. Compute the one-dimensional MTF vector by a radial-average of this array, 

We should note that this method is currently under development and refinement by members of the Camera Phone 

Image Quality (CPIQ) Initiative, and it is likely that a variant of this method will be adopted. The initial description
5
 of 

the use of the dead-leaves target and method focused on the use of the computed target and its spatial attributes, such as 

scale and shift invariance. Less information was given for the particulars of the sampling and estimation to be used. 

McElvain et al.
10

 refer to a second method for estimating the effective “texture MTF” by reversing steps 4 and 5. 

During the development and evaluation of this method for digital camera evaluations, several areas have been described. 

One of these is the deviation of the observed signal spectrum from that predicted by the model, as described in Ref. 10. 

They proposed two extensions to the method aimed at reducing variation (in this case, bias error) from the characteristics 



 

 
 

 

assumed by the method. The first is to modify the assumed input signal spectrum based on the image sampling of the 

camera under test. While this may be a practical solution, spectra based on ideal computed arrays can be susceptible to 

alias errors even when combined with pre-filtering.  
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 (b) (c) 

Figure 3. Results of repeated slanted-edge SFR evaluation (N = 100), varying the image analysis region for a single digital 

camera file. (a) SFR results, N = 100, (b) mean response and ± one standard deviation, and (c) relative error. 

 

A characteristic of the dead-leaves target that provides scale (image-sampling) independent evaluation is the rapidly 

falling signal spectrum as spatial frequency increases. This, however, can be a problem for the evaluation of many 

systems because image noise and image compression artifacts in processed images increased the measured spectra at 

high frequencies, as shown in Fig. 5(c) and (d). In some cases, these unwanted components can dominate the observed 

spectra and therefore bias the resultant texture-MTF. To mitigate this effect, a second suggested modification is to apply 

an empirical correction to the ideal signal spectrum based on the level of the (remaining) image noise, which is estimated 

from a uniform image area.  

4.1 Observed variation 

The first experiment was an investigation of the rotational variation of the spectrum of the sampled target. Figure 4(b) 

and (c) show the amplitude spectrum and cross-sections, respectively. The radial average spectrum is plotted in Fig. 4(c). 

We conclude that that the deviation from rotational symmetry is not due to an observable bias for this target, but it is 



 

 
 

 

what might be expected for spectral estimation results from isotropic stochastic image arrays. This variation could be 

reduced by employing, e.g., a short-block periodogram spectral estimation method, common in image noise evaluation. 

Another source of variation for this method is the computing of the power spectral density or its square root, the 

amplitude spectrum. As for the edge SFR results of Fig. 3, variations due to the placement of the ROI in the image field 

were investigated. An analysis region was chosen to under-fill the image of the dead-leaves target by 25 pixels on all 

sides. The signal spectrum was computed repeatedly, translating the ROI in random x- and y- directions for each 

measurement. Figure 5 shows the results in the form of the average (scaled) spectrum ± one standard deviation and the 

corresponding relative error. 
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Figure 4. (a) Dead-leaves test target, with (b) amplitude spectrum, (c) corresponding cross-sections, and (d) radial average 

spectrum. Note the use of a log scale. 
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 (a)  (b) 

Figure 5. Results of repeated dead-leaves target signal (magnitude) spectrum evaluation (N = 100), varying the image analysis 

region for a single test image in normalized units. (a) mean response and ± one standard deviation, and  (b) relative error. 

 

5. SUMMARY 

The practical measurement of many image quality parameters can be thought of as an estimation problem, based on the 

gathered data, often from digital images. We have investigated two signal transfer methods commonly used for digital 

camera and scanner evaluation: the ISO 12233 slanted-edge spatial frequency response, and the dead-leaves method for 

texture-MTF evaluation. Rather than compare the methods, which measure different characteristics, the intent is to 

indicate how the development of quality measurements can be evaluated and refined, based on the observed variation 

during normal use. The variation due to the selection of analysis regions was computed by repeated analysis. The 

slanted-edge method indicated a relative error in the range of 1-3%, depending on the nature of the region selection. For 

the dead-leaves method, the amplitude spectrum (square root of the noise-power spectrum) showed a relative error of 

around 4-6%, however, this can be reduced by applying spectral estimation methods commonly used in image noise 

analysis. 
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